Integrative Density Forecast and Uncertainty Quantification of Wind Power Generation
نویسندگان
چکیده
The volatile nature of wind power generation creates challenges in achieving secure grid operations. It is, therefore, necessary to accurately predict and its uncertainty quantification. Wind forecasting usually depends on speed prediction the wind-to-power conversion process. However, most current models only consider portions uncertainty. This paper develops an integrative framework for predicting density, considering uncertainties arising from both Specifically, we model using inhomogeneous Geometric Brownian Motion convert density into a closed-form. resulting allows quantifying through intervals. To forecast output, minimize expected cost with (unequal) penalties overestimation underestimation. We show predictive proposed approach data multiple operating farms located at different sites.
منابع مشابه
Unit Commitment with Wind Power Generation: Integrating Wind Forecast Uncertainty and Stochastic Programming
We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use...
متن کاملWind Farm Power Prediction and Uncertainty Quantification
In the recent years, due to the increase in the average temperature and environmental pollution and also the demand for energy, finding new resources for energy generation has been a big challenge for the governments. Among the various renewable energy resources, the energy derived from the wind farms has absorbed a great deal of attention. Due to the increase in the power generated by the wind...
متن کاملTime-adaptive Kernel Density Forecast: a New Method for Wind Power Uncertainty Modeling
This paper reports new contributions to the advancement of wind power uncertainty forecasting beyond the current state-of-the-art. A new kernel density forecast (KDF) method applied to the wind power problem is described. The method is based on the Nadaraya-Watson estimator, and a time-adaptive version of the algorithm is also proposed. Results are presented for different casestudies and compar...
متن کاملwind farm impact on generation adequacy in power systems
در سال های اخیر به دلیل افزایش دمای متوسط کره زمین، بشر به دنبال روش های جایگزین برای تامین توان الکتریکی مورد نیاز خود بوده و همچنین در اکثر نقاط جهان سوزاندن سوخت های فسیلی در نیروگاه های حرارتی به عنوان مهم ترین روش تولید توان الکتریکی مطرح بوده است. به دلیل توجه به مسایل زیست محیطی، استفاده از منابع انرژی تجدید پذیر در سال های اخیر شدت یافته است. نیروگاه های بادی به عنوان یک منبع تولید توان...
15 صفحه اولOptimal power flow based on gray wolf optimization algorithm using probability density functions extraction considering wind power uncertainty
In recent years, utilization of the renewable based power plants has become widespread in the power systems. One of the most widely used renewable based power plants is wind power plants. Due to the utilization of wind energy to generate electricity, wind turbines have not emitted any environmental pollution. Thus, in addition to economic benefits, utilization of these power plants is of great ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Sustainable Energy
سال: 2021
ISSN: ['1949-3029', '1949-3037']
DOI: https://doi.org/10.1109/tste.2021.3069111